

Light Vector mesons from dAu in PHENIX

Richard Seto
University of California, Riveside
for the PHENIX Collaboration
Quark Matter 2004
January 14, 2004

1/10/2004

status

- Scope:
 - dAu phi to ee (dndy,T) min bias prelim
 - dAu phi to KK (dndy, T) min bias- prelim
 - Au-Au phi to KK (dndy, T, mass, width) centrality final
- Data slides "almost final" (sys errors)
 - Question: Can I send data points for dAu (ee,KK) to Patricia?
- Explanation slides sketchy
- Comments(?) about
 - Changes to Au-Au since QM 2003
 - Phi to Ee in qm2003

QCD and the vacuum

- The QCD lagrangian (I.e. nature) obeys chiral symmetry (Why?? Is it true?)
- -> everything has mass=0
- Doesn't match the world
- What do we do? invoke a complicated vacuum
 - The vacuum is not empty it full of stuff (the "condensate")
 - The interaction with the vacuum gives rise to mass
- Crazy.
- How do we see this?
- Heat up the vacuum we boil it and see if masses change
- -> go to zero ultimately
- Chiral phase transition
- Any connection to deconfinement??

Vacuum Nothingness

Looking for Chiral symmetry restoration Vector Meson mass shifts in the dilepton channel

- "Light" Vector mesons are ideal probes (r,w,f)
 - Like putting a scale to measure mass inside the fireball
 - Short lifetime ~ few fm/c
 - Decay inside hot fireball
- Electrons (and muons) are ideal messengers
 - Don't interact strongly (e.g. neutrinos from the sun)
- e.g. In Medium W
 - shows low mass tail -
 - With its good mass resolution PHENIX should be able to see this
 - R. Rapp (Nucl. Phys A661(1999) 238c

Experimental "Knobs"

Signal should increase with centrality

 Signal should be enhanced at low p_T

What do we look for?

- Chiral symmetry restored
 - High temperature vacuum Au-Au Central
 - High baryon density
 - chiral symmetry is partially restored at even normal nuclear density.

- Look for
 - Mass shifts/broadening
 - Increase with centrality
 - Increase to low mt
 - BR(kk/ee) change with centraltiy (Shuryak et al)

T.Hatsuda and S.Lee

QCD sum rules for vector mesons in the nuclear medium

(Phys.Rev.C46-1 1992)

Has anyone seen this?

- Vector meson mass may be modified in dense matter even at densities ~ nuclear matter
- High T (a boiled vacuum)
- High baryon density

Low-mass e+e⁻ pair production in 158A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse Momentum (Phys.Lett.B422:405-412,1998)

K.Ozawa et al.

Observation of ρ/ϖ Meson Modification in Nuclear Matter (Phys.Rev.Lett 86-22)

Outline

- dAu phi to ee (prelim)
- Dau phi to KK (prelim)
 - Compare BR (normal nuclear density)
- Au-Au phi to KK (final)
 - Mass shifts/broadening
 - Guess: cannot see this to hadronic decays (only see stuff which decays outside fireball)
- Centrality dependence of phi production/npart

PHENIX detector – designed for such meaurements

- Designed for such measurement
 - Superb (and redundant) electron PID
 - RICH+EMCAL
 - PID (for kaons)
 - Via TOF to 2GeV
 - Via EMC to 1 GeV
 - Good momentum resolution
 - High rate capability
 - Triggering capability on electron
 - ERT
- Future
 - Upgrade w/ HBD
- Explain ERT
- Electron cuts

ee Invariant Mass Spectra 200 GeV dAu

- Background estimated by event mixing with offline ERT-electron trigger emulation
- Use 500-600,1100-1200 MeV region for BG normalization of Opposite arm Events.
- Use 850-950,1100-1200 MeV region for BG normalization of Opposite arm Events.

Advertise yuji's poster

Min bias, all mt 70 • M=1.0177 ± 0.0023 GeV 10 • Γ =0.00446 (fixed) GeV 10 • σ_{exp} =0.0081 ± 0.0021 10 • χ^2/DOF =13.6/13 10 • Fit is to relativistic B-W convoluted with gaussian

- convoluted with gaussian
- Consistent with PDG

dN/dmt and yield

 $M_T(GeV/c^2)$

dN/dy=.056±.015(stat) ±50%(syst) T=326 ±94(stat) ±53%(syst) MeV PHENIX preliminary

- The major contributions to the systematic error are
 - normalization of the background and signal extraction and the way the variations affect T and hence dNdy
 - The run-by run variation from the ERT

Dau – KK invariant mass

Yield

- PID in TOF only (smaller accepentace)
 - Higher pt
- Nevt = 62 M
- Min. bias with
- |bbcz| < 30 cm
- Nf = 207 + / 16
- S/B = 1/0.16
- < m> = 1.01927 +/- 0.000GeV/c2
- G = 4.750 +/- 0.67 MeV/c

Advertise Dipali's poster

Minimum-bias m_T distribution of f

Consistency

- Consistency of ee and kk
- Fade into this

Comparison with KK results

KK channel dN/dy = 0.0468 + -0.0092(stat)(+0.0095,-0.0092) (syst.)

ee channel

 $dN/dy = .056 \pm .015(stat) \pm 50\%(syst)$

- KK channel T (MeV) = 414 +/- 31 (stat) +/- 23 (syst)Ee channel
- T=326 ±94(stat) ±53%(syst) MeV
 - Yields consistent with each other
 - -> BR in normal ratio

PHENIX preliminary

Au-Au phi to KK

charlie's poster

On to more standard fare: Npart dependence of T

N_{part}

T indep of centrality

dN/dy per npart (npart~9)

dN/dy per participant

dN/dy rises than seems to saturate

OK to patricia?

Add kaons

Fade to this

AuAu K – published (give ref) Au-Au phi to kk– PHENIX FINAL dAu – PHENIX prelim

dN/dy rises than seems to saturate as the kaons

OK to patricia?

Conclude

- Summary:
 - A first measurement has been made of the phi to ee channel. Within error bars it agrees with the KK result.
 - For overall shapes in Au-Au phi to KK, mass and width stay consistent with PDG as a function of centrality
 - Strangeness Enhancement as a function of centrality, simillar to kaons (look at lambda?)
- Note: early in the story of Imvm ee physics
 - Use rest of statistics
 - Better control of systematics
 - Upgrades/rates
 - Centrality dependence (dau-KK, ee?)
 - Omega
- run 4?
 - Phi flow
 - Ee dependence on triggering etc

Electron identification

We used very loose cut in order to take more statistics, and to make estimation of eID easy

EMC matching < 4σ

Matching =
$$\sqrt{dj}^2 + dz^2$$

- n0>=2
- Ghost track cut
 - kill worse matching track If dzed<1 & dphi<0.1
- RICH ring sharing cut
 - Kill one track if dc_zed<10 & dc_phi<0.1 randomly

Conversion Rejection by invariant mass and PhiV

- e+e- pair from photon conversion has small phiv and small mass.we cut those pairs at low-background region
 - Kill all tracks if PhiV<0.1 for mass<400MeV
 - Kill all tracks if mass<100MeV

Event selection

- Front-end electronics and data storage limit trigger and recording rate.
- Give priority for electron events to record.
 - ERT electron trigger by RICH & EMC online

- Analyzed 31M of ERT-electron Triggered Events.
 - Corresponds to 1.9G minimum bias (raw trigger)
 - 50% of total data taken during run3